| | DAYBREAK | G-109 BE | ACH BACK ¹ | ВЕ | 3-S Con | np | | |-----------------------------------|----------|----------|-----------------------|--------|---------|----|--| | Analyte | RESULT | DL | RL | RESULT | DL | RL | | | Dioxins/Furans (pg/g) | | | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.300 | 0.0950 | 1.00 | | | | | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.0760 | 1.00 | | | | | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.0757 | 1.00 | | | | | | 1,2,3,4,7,8-Hexa CDD | ND | 0.108 | 1.00 | | | | | | 1,2,3,4,7,8-Hexa CDF | ND | 0.0891 | 1.00 | | | | | | 1,2,3,6,7,8-Hexa CDD | ND | 0.113 | 1.00 | | | | | | 1,2,3,6,7,8-Hexa CDF | ND | 0.0929 | 1.00 | | | | | | 1,2,3,7,8,9-Hexa CDD | ND | 0.113 | 1.00 | | | | | | 1,2,3,7,8,9-Hexa CDF | ND | 0.0898 | 1.00 | | | | | | 1,2,3,7,8-Penta CDD | ND | 0.0948 | 1.00 | | | | | | 1,2,3,7,8-Penta CDF | ND | 0.0948 | 1.00 | | | | | | 2,3,4,6,7,8-Hexa CDF | ND | 0.0842 | 1.00 | | | | | | 2,3,4,7,8-Penta CDF | ND | 0.0923 | 1.00 | | | | | | 2,3,7,8-Tetra CDD | ND | 0.109 | 0.200 | | | | | | 2,3,7,8-Tetra CDF | ND | 0.101 | 0.200 | | | | | | Octa CDD | 1.45 | 0.199 | 2.00 | | | | | | Octa CDF | ND | 0.200 | 2.00 | | | | | | Total Hepta CDD | 0.564 | 0.0950 | 1.00 | | | | | | Total Hepta CDF | 0.0901 | 0.0758 | 1.00 | | | | | | Total Hexa CDD | 0.128 | 0.112 | 1.00 | | | | | | Total Hexa CDF | ND | 0.0889 | 1.00 | | | | | | Total Penta CDD | ND | 0.0948 | 1.00 | | | | | | Total Penta CDF | ND | 0.0936 | 1.00 | | | | | | Total Tetra CDD | ND | 0.109 | 0.200 | | | | | | Total Tetra CDF | ND | 0.101 | 0.200 | | | | | | Polychlorinated Biphenyls (ug/kg) | | | | | | | | | Aroclor 1016 | ND | | 10.2 | | | | | | Aroclor 1221 | ND | | 10.2 | | | | | | Aroclor 1232 | ND | | 10.2 | | | | | | Aroclor 1242 | ND | | 10.2 | | | | | | Aroclor 1248 | ND | | 10.2 | | | | | | Aroclor 1254 | ND | | 10.2 | | | | | | Aroclor 1260 | ND | | 10.2 | | | | | | Organochlorine Pesticides (ug/kg) | | | | | | | | | Aldrin | ND | | 4.42 | | | | | | alpha-BHC | ND | | 4.42 | | | | | | beta-BHC | ND | | 4.42 | | | | | | delta-BHC | ND | | 4.42 | | | | | | gamma-BHC (Lindane) | ND | | 4.42 | | | | | | cis-Chlordane | ND | | 4.42 | | | | | | trans-Chlordane | ND | | 4.42 | | | | | | 4,4'-DDD | ND | | 4.42 | | | | | | 4,4'-DDE | ND | | 4.42 | | | | | | 4,4'-DDT | ND | | 4.42 | | | | | | Endosulfan ND | | ND |
4.42 |
 | | |--|---------------------------------------|----|----------|------|-------| | Endosulfan sulfate Endrin Endrin ND | | | |
 | | | Endosulfan sulfate ND 4.42 Endrin ND 4.42 Endrin Aldehyde ND 4.42 Endrin Aldehyde ND 4.42 Endrin Aldehyde ND 4.42 Heptachlor ND 4.42 Heptachlor epoxide ND 4.42 Methoxychlor ND 13.3 Chlordane (Technical) ND 133 Toxaphene (Total) ND 133 Acenaphthalene (Total) ND 2.74 Acenaphthylene (ND ND 2.74 Acenaphthylene ND 2.74 | | | |
 | | | Endrin ND | | | |
 | | | Endrin Aldehyde ND | Tall Sallace | | | | | | Endrin ketone | Aldehyde | | | | | | Heptachlor | · | | | | | | Heptachlor epoxide | | | | | | | Methoxychlor ND 13.3 Chlordane (Technical) ND 133 Toxaphene (Total) ND 133 Semivolatile Organic Compounds (ug/kg) Acenaphthene ND 2.74 Acenaphthylene ND 2.74 Anthracene ND 2.74 Anthracene ND 2.74 Benzo(a)pyrene ND 4.1 Benzo(bfluoranthene ND 4.1 Benzo(g,h,j)perylene ND 4.1 Chrysene ND 2.74 - | | | | | | | Chlordane (Technical) ND 133 Semivolatile Organic Compounds (ug/kg) ND 133 Acenaphthene ND 2.74 Acenaphthylene ND 2.74 Anthracene ND 2.74 Benz(a)anthracene ND 2.74 Benzo(b)fluoranthene ND 4.1 Benzo(g,h)pyrene ND 4.1 Benzo(g,h)iperylene ND 4.1 Benzo(g,h)anthracene ND 2.74 Dibenz(a,h)anthracene ND 2.74 Fluoranthene ND 2.74 Fluoranthene ND 2.74 | | | | | | | Toxaphene (Total) | | | | | | | Semivolatile Organic Compounds (ug/kg) | • | | | 1 | | | Acenaphthene ND 2.74 Acenaphthylene ND 2.74 Anthracene ND 2.74 Benz(a)anthracene ND 2.74 Benzo(b)fluoranthene ND 4.1 Benzo(k)fluoranthene ND 2.74 Chrysene ND 2.74 Fluoranthene ND 2.74 | | ND | 133 | | | | Acenaphthylene ND 2.74 Anthracene ND 2.74 Benz(a)anthracene ND 2.74 Benzo(a)pyrene ND 4.1 Benzo(b)fluoranthene ND 4.1 Benzo(k)fluoranthene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 2.74 Chrysene ND 2.74 Dibenzo(a,h)anthracene ND 2.74 Chrysene ND 2.74 Fluoranthene ND < | | ND |
2 74 |
 | | | Anthracene ND 2.74 Benz(a)anthracene ND 2.74 Benzo(a)pyrene ND 4.1 Benzo(b)fluoranthene ND 4.1 Benzo(k)fluoranthene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 2.74 Chrysene ND 2.74 Dibenzo(a), piyrene ND 4.74 Benzo(k)fluoranthene ND 2.74 Fluoranthene ND 2.74 Indenz(a, h)anthracene ND 2.74 | | | |
 | | | Benz(a)anthracene ND 2.74 Benzo(a)pyrene ND 4.1 Benzo(b)fluoranthene ND 4.1 Benzo(g,h,i)perylene ND 4.1 Benzo(g,h,i)perylene ND 2.74 Chrysene ND 2.74 Dibenz(a,h)anthracene ND 2.74 Fluoranthene ND 2.74 Indeno(1,2,3-cd)pyrene ND 2.74 | · | | | | | | Benzo(a)pyrene ND 4.1 < | | | | | | | Benzo(b)fluoranthene ND 4.1 | | | | | | | Benzo(k)fluoranthene ND 4.1 | | | | | | | Benzo(g,h,i)perylene ND 2.74 | | | | 1 | | | Chrysene ND 2.74 | • | | | | | | Dibenz(a,h)anthracene ND 2.74 | | | | | | | Fluoranthene ND | | | | | | | Fluorene ND 2.74 Indeno(1,2,3-cd)pyrene ND 2.74 1-Methylnaphthalene ND 5.46 2-Methylnaphthalene ND 5.46 Naphthalene ND 5.46 Naphthalene ND 5.46 Phenanthrene ND 2.74 Pyrene ND 2.74 Carbazole ND 4.10 Dibenzofuran ND 2.74 4-Chloro-3-methylphenol ND 13.6 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 68.3 | | | | | | | Indeno(1,2,3-cd)pyrene | | | | | | | 1-Methylnaphthalene ND 5.46 2-Methylnaphthalene ND 5.46 Naphthalene ND 5.46 Phenanthrene ND 2.74 Pyrene ND 2.74 Carbazole ND 4.10 Dibenzofuran ND 2.74 4-Chloro-3-methylphenol ND 27.4 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3 2,4-Dinitrophenol ND 68.3 | | | | | | | 2-Methylnaphthalene ND 5.46 Naphthalene ND 5.46 Phenanthrene ND 2.74 Pyrene ND 2.74 Carbazole ND 4.10 Dibenzofuran ND 2.74 4-Chloro-3-methylphenol ND 27.4 2-Chlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3 | | | | | | | Naphthalene ND 5.46 <th< td=""><td></td><td></td><td></td><td></td><td></td></th<> | | | | | | | Phenanthrene ND 2.74 <t< td=""><td></td><td></td><td></td><td>
</td><td></td></t<> | | | |
 | | | Pyrene ND 2.74 < | | | | | | | Carbazole ND 4.10 - | tillelle | | |
 | | | Dibenzofuran ND 2.74 4-Chloro-3-methylphenol ND 27.4 2-Chlorophenol ND 13.6 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 68.3 2,4-Dinitrophenol ND 68.3 | nle | | | | | | 4-Chloro-3-methylphenol ND 27.4 2-Chlorophenol ND 13.6 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3 | | | |
 | | | 2-Chlorophenol ND 13.6 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3 | | | |
 | | | 2,4-Dichlorophenol ND 13.6 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3 | | | |
 | | | 2,4-Dimethylphenol ND 13.6 2,4-Dinitrophenol ND 68.3 | · | | |
 | | | 2,4-Dinitrophenol ND 68.3 | · | | |
 | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 200 | <i>,</i> , | | | | | | | | | | | | | | | | |
 | | | 1 | | | |
 | | | | | | |
 | | | | | | |
 | | | 204671 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Tetrachlorophenol | | |
 | | | 22567. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | • | | | |
М | | 2,4,5-Trichlorophenol | ND |
13.6 | | T | | | |------------------------------|-------|-----------|------|---------|------|--| | 2,4,6-Trichlorophenol | ND |
13.6 | | | | | | Bis(2-ethylhexyl)phthalate | ND |
41 | | | | | | Butyl benzyl phthalate | ND |
27.4 | | | | | | Diethylphthalate | ND |
27.4 | | | | | | Dimethylphthalate | ND |
27.4 | | | | | | Di-n-butylphthalate | ND |
27.4 | | | | | | Di-n-octyl phthalate | ND |
27.4 | | | | | | N-Nitrosodimethylamine | ND |
6.83 | | | | | | N-Nitroso-di-n-propylamine | ND |
6.83 | | | | | | N-Nitrosodiphenylamine | ND |
6.83 | | | | | | Bis(2-Chloroethoxy) methane | ND |
6.83 | | | | | | Bis(2-Chloroethyl) ether | ND |
6.83 | | | | | | Bis(2-Chloroisopropyl) ether | ND |
6.83 | | | | | | Hexachlorobenzene | ND |
2.74 | | | | | | Hexachlorobutadiene | ND |
6.83 | | | | | | Hexachlorocyclopentadiene | ND |
13.6 | | | | | | Hexachloroethane | ND |
6.83 | | | | | | 2-Chloronaphthalene | ND |
2.74 | | | | | | 1,2-Dichlorobenzene | ND |
6.83 | | | | | | 1,3-Dichlorobenzene | ND |
6.83 | | | | | | 1,4-Dichlorobenzene | ND |
6.83 | | | | | | 1,2,4-Trichlorobenzene | ND |
6.83 | | | | | | 4-Bromophenyl phenyl ether | ND |
6.83 | | | | | | 4-Chlorophenyl phenyl ether | ND |
6.83 | | | | | | Aniline | ND |
13.6 | | | | | | 4-Chloroaniline | ND |
6.83 | | | | | | 2-Nitroaniline | ND |
54.6 | | | | | | 3-Nitroaniline | ND |
54.6 | | | | | | 4-Nitroaniline | ND |
54.6 | | | | | | Nitrobenzene | ND |
27.4 | | | | | | 2,4-Dinitrotoluene | ND |
27.4 | | | | | | 2,6-Dinitrotoluene | ND |
27.4 | | | | | | Benzoic acid | ND |
341 | | | | | | Benzyl alcohol | ND |
13.6 | | | | | | Isophorone | ND |
6.83 | | | | | | Azobenzene (1,2-DPH) | ND |
6.83 | | | | | | Bis(2-Ethylhexyl) adipate | ND |
68.3 | | | | | |
3,3'-Dichlorobenzidine | ND |
27.4 | | | | | | 1,2-Dinitrobenzene | ND |
68.3 | | | | | | 1,3-Dinitrobenzene | ND |
68.3 | | | | | | 1,4-Dinitrobenzene | ND |
68.3 | | | | | | Pyridine | ND |
13.6 | | | | | | Total Metals (mg/kg) | | | | | | | | Arsenic | 59.0* |
1.02 | 4.29 | | 1.02 | | | Barium | 74.4 |
1.02 | | | | | | Cadmium | ND |
0.205 | | | | | | Chromium | 9.69 |
4.09 | |
 | |-----------|------|------------|--|------| | Copper | |
 | |
 | | Lead | 3.47 |
0.205 | |
 | | Manganese | |
 | |
 | | Mercury | ND |
0.0818 | |
 | | Selenium | ND |
2.05 | |
 | | Silver | ND |
0.205 | |
 | | Zinc | |
 | |
 | ### Notes: DL = detection limit RL = reporting limit ND = not detected at or above the DL original sample result reported by laboratory was point composite samples were then collected from ¹ All beach backfill results are from the same source. | ВЕ | B-C Con | np | ВВ | S-N Con | np | BB- | Total Co | mp | Import Criteria | |--------|---------|----|--------|---------|----|--------|----------|-------|-----------------| | RESULT | DL | RL | RESULT | DL | RL | RESULT | DL | RL | · | | | | | | | | | | | | | | | | | | | 0.299 | 0.108 | 4.96 | 2.5 | | | | | | | | 0.11 | 0.0962 | 4.96 | 2.5 | | | | | | | | ND | 0.0968 | 4.96 | 2.5 | | | | | | | | ND | 0.102 | 4.96 | 2.5 | | | | | | | | ND | 0.0999 | 4.96 | 2.5 | | | | | | | | ND | 0.107 | 4.96 | 2.5 | | | | | | | | ND | 0.103 | 4.96 | 2.5 | | | | | | | | ND | 0.104 | 4.96 | 2.5 | | | | | | | | ND | 0.0993 | 4.96 | 2.5 | | | | | | | | ND | 0.101 | 4.96 | 2.5 | | | | | | | | ND | 0.105 | 4.96 | 2.5 | | | | | | | | ND | 0.0945 | 4.96 | 2.5 | | | | | | | | ND | 0.103 | 4.96 | 2.5 | | | | | | | | ND | 0.103 | 0.993 | 0.5 | | | | | | | | ND | 0.107 | 0.993 | 0.5 | | | | | | | | 1.81 | 0.107 | 9.93 | 5 | | | | | | | | 0.166 | 0.108 | 9.93 | 5 | | | | | | | | 0.523 | 0.108 | 4.96 | | | | | | | | | 0.11 | 0.0965 | 4.96 | | | | | | | | | ND | 0.162 | 4.96 | | | | | | | | | ND | 0.0992 | 4.96 | | | | | | | | | ND | 0.101 | 4.96 | | | | | | | | | ND | 0.104 | 4.96 | | | | | | | | | ND | 0.144 | 0.993 | | | | | | | | | ND | 0.107 | 0.993 | ND | | 9.19 | 10 | | | | | | | | ND | | 9.19 | 10 | | | - | | | | | ND | | 9.19 | 10 | | | 1 | | | | | ND | | 9.19 | 10 | | | | | | | | ND | | 9.19 | 10 | | | | | | | | ND | | 9.19 | 10 | | | | | | | | ND | | 9.19 | 10 | | | | | | | | | | | | | | | | | | | ND | | 1.8 | 5 | | | | | | | | ND | | 1.8 | 5 | | | | | | | | ND | | 1.8 | 5 | | | - | | | | | ND | | 1.8 | 5 | | | - | | | | | ND | | 1.8 | 5 | | | | | | | | ND | | 1.8 | 100 | | | - | | | | | ND | | 1.8 | 100 | | | | | | | | ND | | 1.8 | 5 | | | | | | | | ND | | 1.8 | 5 | | | | | | | | ND | | 1.8 | 5 | | ND 1.8 5 5.41 5 ND 54.1 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 3.97 ND 2.65 330 - | | |---|--| | ND 1.8 5 | | | ND | | | ND ND ND ND ND ND ND ND | | | ND ND ND ND ND ND ND ND | | | ND 1.8 5 ND 5.41 5 ND 54.1 250 ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 2.65 330 ND 3.97 ND 2.65 330 | | | ND 1.8 5 ND 1.8 5 ND 5.41 5 ND 54.1 ND 54.1 250 ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 | | | ND 1.8 5 ND 5.41 5 ND 54.1 ND 54.1 ND 54.1 250 ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 2.65 330 | | | ND 1.8 5 ND 5.41 5 ND 54.1 ND 54.1 ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 2.65 330 | | | ND 5.41 5 | | | ND 54.1 | | | ND 54.1 250 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 | | | ND 2.65 330 ND 3.97 330 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 2.65 330 | | | ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 | | | ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 | | | ND 2.65 330 ND 2.65 330 ND 3.97 330 ND 3.97 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 | | | ND 2.65 330 ND 3.97 330 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 3.97 ND 2.65 330 | | | ND 3.97 330 ND 3.97 ND 3.97 ND 3.97 ND 2.65 330 | | | ND 3.97 ND 3.97 ND 3.97 ND 2.65 330 | | | ND 3.97 ND 2.65 330 | | | ND 2.65 330 | | | ND 2.65 330 ND 2.65 330 ND 2.65 330 ND 2.65 330 | | | ND 2.65 330
ND 2.65 330 | | | ND 2.65 330 | | | | | | I I I I I I I I I I I I I I I I I I I | | | ND 2.65 330 | | | ND 2.65 330 | | | ND 5.29 10000 | | | ND 5.29 | | | ND 5.29 330 | | | ND 2.65 330 | | | ND 2.65 330 | | | ND 3.97 | | | ND 2.65 330 | | | ND 26.5 | | | ND 13.2 | | | ND 13.2 | | | ND 13.2 330 | | | 66.2 | | | 66.2 | | | ND 6.62 330 | | | ND 6.62 330 | | | ND 26.5 | | | ND 26.5 2000 | | | ND 26.5 | | | ND 5.29 330 | | | ND 13.2 | | | 13.2 | | | |
 | |
 | ND |
0.22 | 0.63 | |------|----------|------|----------|----------|------------------|------| | 4.43 |
1.04 | 4.46 |
1.10 | 3.91 |
1.10 | 8.8 | | | | | | | | | | |
 | |
 | ND |
13.2 | | | |
 | |
 | ND |
66.2 | | | |
 | |
 | ND |
66.2 | | | |
 | |
 | ND |
66.2 | | | |
 | |
 | ND
ND |
66.2
26.5 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
13.2 | 330 | | |
 | |
 | ND |
330 | 2000 | | |
 | |
 | ND |
26.5 | 2000 | | |
 | |
 | ND |
26.5 | | | |
 | |
 | ND |
26.5 | | | |
 | |
 | ND |
52.9 | | | |
 | |
 | ND |
52.9 | | | |
 | |
 | ND |
52.9 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
13.2 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
2.65 | | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
13.2 | 333 | | |
 | |
 | ND |
6.62 | 330 | | |
 | |
 | ND |
2.65 | 330 | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND
ND |
6.62 | 330 | | |
 | |
 | ND |
6.62
6.62 | 220 | | |
 | |
 | ND |
6.62 | | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
26.5 | 330 | | |
 | |
 | ND |
39.7 | 330 | | |
 | |
 | ND |
13.2 | | | |
 | |
 | ND |
13.2 | | |
 | |
 | | 8.59 |
1.1 | 76 | |------|--|------|--|------|------------|------| |
 | |
 | | 25.2 |
2.20 | 34 | |
 | |
 | | 3.36 |
0.22 | 79 | |
 | |
 | | 323 |
1.10 | 1800 | |
 | |
 | | ND |
0.0881 | 0.23 | |
 | |
 | | |
 | | |
 | |
 | | |
 | | |
 | |
 | | 28.9 |
4.40 | 180 | 5 59 mg/kg. The result from reanalysis of a second aliquot from the same sample was 4.45 mg/kg. Three 5-the material, and the resulting arsenic concentrations were 4.29, 4.43, and 4.46 mg/kg. Laboratory reports | | | | 1 | | | 2 | |-----------------------------------|----------------|--------|-------|--------|---------|-------| | | LIVINGSTON G-1 | | | | L CREEK | | | Analyte | RESULT | DL | RL | RESULT | DL | RL | | Dioxins/Furans (pg/g) | | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.192 | 0.101 | 1.00 | 0.852 | 0.101 | 5.00 | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.104 | 1.00 | 0.445 | 0.102 | 5.00 | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.103 | 1.00 | ND | 0.102 | 5.00 | | 1,2,3,4,7,8-Hexa CDD | ND | 0.102 | 1.00 | ND | 0.107 | 5.00 | | 1,2,3,4,7,8-Hexa CDF | ND | 0.100 | 1.00 | 0.208 | 0.105 | 5.00 | | 1,2,3,6,7,8-Hexa CDD | ND | 0.107 | 1.00 | ND | 0.112 | 5.00 | | 1,2,3,6,7,8-Hexa CDF | ND | 0.105 | 1.00 | ND | 0.109 | 5.00 | | 1,2,3,7,8,9-Hexa CDD | ND | 0.106 | 1.00 | 0.122 | 0.109 | 5.00 | | 1,2,3,7,8,9-Hexa CDF | ND | 0.101 | 1.00 | ND | 0.104 | 5.00 | | 1,2,3,7,8-Penta CDD | ND | 0.103 | 1.00 | ND | 0.106 | 5.00 | | 1,2,3,7,8-Penta CDF | ND | 0.110 | 1.00 | ND | 0.110 | 5.00 | | 2,3,4,6,7,8-Hexa CDF | ND | 0.0949 | 1.00 | ND | 0.0993 | 5.00 | | 2,3,4,7,8-Penta CDF | ND | 0.108 | 1.00 | ND | 0.107 | 5.00 | | 2,3,7,8-Tetra CDD | 0.726 | 0.108 | 0.200 | ND | 0.102 | 0.999 | | 2,3,7,8-Tetra CDF | 6.81 (7.20*) | 0.100 | 0.200 | 0.128 | 0.101 | 0.999 | | Octa CDD | 0.783 | 0.105 | 2.00 | 5.3 | 0.101 | 9.99 | | Octa CDF | ND | 0.107 | 2.00 | 0.495 | 0.109 | 9.99 | | Total Hepta CDD | 0.327 | 0.101 | 1.00 | 1.97 | 0.100 | 5.00 | | Total Hepta CDF | ND
 0.104 | 1.00 | 0.445 | 0.102 | 5.00 | | Total Hexa CDD | ND | 0.106 | 1.00 | 0.651 | 0.109 | 5.00 | | Total Hexa CDF | ND | 0.100 | 1.00 | 0.355 | 0.104 | 5.00 | | Total Penta CDD | ND | 0.103 | 1.00 | ND | 0.106 | 5.00 | | Total Penta CDF | ND | 0.109 | 1.00 | 0.145 | 0.108 | 5.00 | | Total Tetra CDD | 0.726 | 0.108 | 0.200 | ND | 0.151 | 0.999 | | Total Tetra CDF | 11.7 | 0.100 | 0.200 | 0.128 | 0.101 | 0.999 | | Polychlorinated Biphenyls (ug/kg) | | | | | | | | Aroclor 1016 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1221 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1232 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1242 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1248 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1254 | ND | | 10.5 | ND | | 9.96 | | Aroclor 1260 | ND | | 10.5 | ND | | 9.96 | | Organochlorine Pesticides (ug/kg) | | | | | | | | Aldrin | ND | | 4.66 | ND | | 0.996 | | alpha-BHC | ND | | 4.66 | ND | | 0.996 | | beta-BHC | ND | | 4.66 | ND | | 0.996 | | delta-BHC | ND | | 4.66 | ND | | 0.996 | | gamma-BHC (Lindane) | ND | | 4.66 | ND | | 0.996 | | cis-Chlordane | ND | | 4.66 | ND | | 0.996 | | | | | |
- | | | | trans-Chlordane | ND |
4.66 | ND |
0.996 | |--|----|----------|----|-----------| | 4,4'-DDD | ND |
4.66 | ND |
0.996 | | 4,4'-DDE | ND |
4.66 | ND |
0.996 | | 4,4'-DDT | ND |
4.66 | ND |
0.996 | | Dieldrin | ND |
4.66 | ND |
0.996 | | Endosulfan I | ND |
4.66 | ND |
0.996 | | Endosulfan II | ND |
4.66 | ND |
0.996 | | Endosulfan sulfate | ND |
4.66 | ND |
0.996 | | Endrin | ND |
4.66 | ND |
0.996 | | Endrin Aldehyde | ND |
4.66 | ND |
0.996 | | Endrin ketone | ND |
4.66 | ND |
0.996 | | Heptachlor | ND |
4.66 | ND |
0.996 | | Heptachlor epoxide | ND |
4.66 | ND |
0.996 | | Methoxychlor | ND |
14 | ND |
2.99 | | Chlordane (Technical) | ND |
140 | ND |
29.9 | | Toxaphene (Total) | ND |
140 | ND |
29.9 | | Semivolatile Organic Compounds (ug/kg) | | | | | | Acenaphthene | ND |
2.82 | ND |
249 | | Acenaphthylene | ND |
2.82 | ND |
249 | | Anthracene | ND |
2.82 | ND |
249 | | Benz(a)anthracene | ND |
2.82 | ND |
249 | | Benzo(a)pyrene | ND |
4.23 | ND |
249 | | Benzo(b)fluoranthene | ND |
4.23 | ND |
249 | | Benzo(k)fluoranthene | ND |
4.23 | ND |
249 | | Benzo(g,h,i)perylene | ND |
2.82 | ND |
249 | | Chrysene | ND |
2.82 | ND |
249 | | Dibenz(a,h)anthracene | ND |
2.82 | ND |
249 | | Fluoranthene | ND |
2.82 | ND |
249 | | Fluorene | ND |
2.82 | ND |
249 | | Indeno(1,2,3-cd)pyrene | ND |
2.82 | ND |
249 | | 1-Methylnaphthalene | ND |
5.64 | ND |
249 | | 2-Methylnaphthalene | ND |
5.64 | ND |
249 | | Naphthalene | ND |
5.64 | ND |
249 | | Phenanthrene | ND |
2.82 | ND |
249 | | Pyrene | ND |
2.82 | ND |
249 | | Carbazole | ND |
4.23 | ND |
249 | | Dibenzofuran | ND |
2.82 | ND |
249 | | 4-Chloro-3-methylphenol | ND |
28.2 | ND |
249 | | 2-Chlorophenol | ND |
14.1 | ND |
249 | | 2,4-Dichlorophenol | ND |
14.1 | ND |
249 | | 2,4-Dimethylphenol | ND |
14.1 | ND |
249 | | 2,4-Dinitrophenol | ND |
70.5 | ND |
249 | | 4,6-Dinitro-2-methylphenol | ND |
70.5 | ND |
598 | | 2-Methylphenol | ND |
7.05 | ND |
249 | | z-ivietnyiphenoi | טא |
7.05 | ND |
24 | | 3+4-Methylphenol(s) ND 7.05 ND 2-Nitrophenol ND 28.2 ND 4-Nitrophenol ND 28.2 ND Pentachlorophenol (PCP) ND 28.2 ND Phenol ND 5.64 ND 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 <t< th=""><th>249 249 249 249 249 249 249 249 249 249</th></t<> | 249 249 249 249 249 249 249 249 249 249 | |---|--| | 4-Nitrophenol ND 28.2 ND Pentachlorophenol (PCP) ND 28.2 ND Phenol ND 5.64 ND 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 | 249 249 249 249 249 249 249 249 249 249 | | Pentachlorophenol (PCP) ND 28.2 ND Phenol ND 5.64 ND 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 28.2 ND Dientylphthalate ND 28.2 ND Di-n-butylphthalate ND <td>249 249 249 249 249 249 249 249 249 249</td> | 249 249 249 249 249 249 249 249 249 249 | | Phenol ND 5.64 ND 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,3,5,6-Tetrachlorophenol ND 14.8 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND | 249 249 249 249 249 249 249 249 249 249 | | 2,3,4,6-Tetrachlorophenol ND 14.1 ND 2,3,5,6-Tetrachlorophenol ND 14.8 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Dimethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND | 249 249 249 249 249 249 249 249 249 249 | | 2,3,5,6-Tetrachlorophenol ND 14.8 ND 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249 249 249 249 249 249 249 249 249 249 | | 2,4,5-Trichlorophenol ND 14.1 ND 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249
249
249
249
249
249
249 | | 2,4,6-Trichlorophenol ND 14.1 ND Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249
249
249
249
249
249
249 | | Bis(2-ethylhexyl)phthalate ND 42.3 ND Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249
249
249
249
249
249 | | Butyl benzyl phthalate ND 28.2 ND Diethylphthalate ND 28.2 ND Dimethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249
249
249
249
249
249 | | Diethylphthalate ND 28.2 ND Dimethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249
249
249
249
249 | | Dimethylphthalate ND 28.2 ND Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249
249
249
249 | | Di-n-butylphthalate ND 28.2 ND Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249
249
249 | | Di-n-octyl phthalate ND 28.2 ND N-Nitrosodimethylamine ND 7.05 ND N-Nitroso-di-n-propylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249
249 | | N-Nitrosodimethylamine ND 7.05 ND N-Nitroso-di-n-propylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249
249 | | N-Nitroso-di-n-propylamine ND 7.05 ND N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249
249 | | N-Nitrosodiphenylamine ND 7.05 ND Bis(2-Chloroethoxy) methane ND 7.05 ND | 249
249 | | Bis(2-Chloroethoxy) methane ND 7.05 ND | 249 | | ` '' | | | Bis(2-Chloroethyl) ether | | |
IDIS(2 SINOTOCKTIYI) CUTCI | 249 | | Bis(2-Chloroisopropyl) ether ND 7.05 ND | 249 | | Hexachlorobenzene ND 2.82 ND | 249 | | Hexachlorobutadiene ND 7.05 ND | 249 | | Hexachlorocyclopentadiene ND 14.1 ND | 249 | | Hexachloroethane ND 7.05 ND | 249 | | 2-Chloronaphthalene ND 2.82 ND | 249 | | 1,2-Dichlorobenzene ND 7.05 ND | 249 | | 1,3-Dichlorobenzene ND 7.05 ND | 249 | | 1,4-Dichlorobenzene ND 7.05 ND | 249 | | 1,2,4-Trichlorobenzene ND 7.05 ND | 249 | | 4-Bromophenyl phenyl ether ND 7.05 ND | 249 | | 4-Chlorophenyl phenyl ether ND 7.05 ND | 249 | | Aniline ND 14.1 ND | 249 | | 4-Chloroaniline ND 7.05 ND | 249 | | 2-Nitroaniline ND 56.4 ND | 249 | | 3-Nitroaniline ND 56.4 ND | 249 | | 4-Nitroaniline ND 56.4 ND | 249 | | Nitrobenzene ND 28.2 ND | 249 | | 2,4-Dinitrotoluene ND 28.2 ND | 249 | | 2,6-Dinitrotoluene ND 28.2 ND | 249 | | Benzoic acid ND 352 ND | 1250 | | Benzyl alcohol ND 14.1 ND | 249 | | Isophorone ND 7.05 ND | 249 | | Azobenzene (1,2-DPH) ND 7.05 ND | 249 | | Bis(2-Ethylhexyl) adipate | ND | | 70.5 | | ND | | 249 | | | | |---------------------------|---|-----------|------------|------|---------|------------|------------|--|--|--| | 3,3'-Dichlorobenzidine | ND | | 28.2 | | ND | | 249 | | | | | 1,2-Dinitrobenzene | ND | | 70.5 | | ND | | 249 | | | | | 1,3-Dinitrobenzene | ND | | 70.5 | | ND | | 249 | | | | | 1,4-Dinitrobenzene | ND | | 70.5 | | ND | | 249 | | | | | Pyridine | ND | | 14.1 | | ND | | 498 | | | | | Total Metals (mg/kg) | | | | | | | | | | | | Arsenic | 1.65 | | 1.10 | | ND | | 1.03 | | | | | Barium | 59.4 | | 1.10 | | | | | | | | | Cadmium | ND | | 0.221 | | ND | | 0.206 | | | | | Chromium | ND | | 4.42 | | 3.88 | | 1.03 | | | | | Copper | 24.5 | | 1.10 | | 11.7 | | 1.03 | | | | | Lead | 2.5 | | 0.221 | | ND | | 1.03 | | | | | Manganese | 210 | | 1.10 | | 145 | | 1.03 | | | | | Mercury | ND | | 0.0884 | | ND | | 0.165 | | | | | Selenium | ND | | 2.21 | | | | | | | | | Silver | ND | | 0.221 | | | | | | | | | Zinc | 33.3 | | 4.42 | | 17.1 | | 4.11 | | | | | | | | | | | | | | | | | Notes: | | | | | | | | | | | | | DL | = detec | tion limit | | | | | | | | | | | | ting limit | | | | | | | | | | | = not de | etected a | t or | above t | he DL | | | | | | | * | = confir | mation re | esu | lt | | | | | | | | | = excee | ds Impor | t Cr | iteria | | | | | | | | | Initial s | ource of b | oeri | m mater | ial that i | s not into | | | | | | 1 Results from initial source of identified b | | | | | | | | | | | | 2 | Results | from sec | onc | source | of ident | ified beri | Import Criteria | | | | | |-----------------|--|--|--|--| | | | | | | | | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 2.5 | | | | | | 0.5 | | | | | | 0.5 | | | | | | | | | | | | 5 | | | | | | 5 | 10 | | | | | | 10 | | | | | | 10 | | | | | | 10 | | | | | | 10 | | | | | | 10 | | | | | | 10 | | | | | | | | | | | | 5 | | | | | | 5 | | | | | | 5 | | | | | | 5 5 | | | | | | 5 | | | | | | 100 | | | | | | 100 | | | | | | 100 | | | | | |------------------|--|--|--|--| | | | | | | | 5 | | | | | | 5 | | | | | | 5
5
5
5 | | | | | | | | | | | | 5
5 | | | | | | 5 | | | | | | 5
5
5 | | | | | | 5 | | | | | | 5 | | | | | | 5 5 | | | | | | 5 | | | | | | 5
5 | | | | | | | | | | | | | | | | | | 250 | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 10000 | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | | | | | | | 330 | 330 | 330 | | | | | | 330 | | | | | |------|--|--|--|--| | | | | | | | 2000 | | | | | | | | | | | | | | | | | | 330 | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | | | | | | | | | | | | | 330 | 330 | | | | | | 330 | | | | | | 330 | | | | | | 220 | | | | | | 330 | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | 2000 | | | | | | 330 | 8.8 | | | | | |-----|----------------|---|--|--|--| | | | | | | | | | 0.63 | | | | | | | 76 | | | | | | | 34 | | | | | | | 79 | | | | | | | 1800 | | | | | | | 0.23 | 180 | end | led for import | _ | | | | | | aterial | | | | | | | naterial | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | — | | | | | |----------|--|--|------|------|
 |
 | | - | | | | | | <u> </u> | | | | | |----------|--|--|--|--| — | | | | | |----------|--|--|------|------|
 |
 | | - | | | | | | | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | I | | |--|--|--|---|--|
 | <u> </u> | | | | | |----------|------|------|------|--| | |
 |
 |
 | <u> </u> | <u> </u> | | | | | | |
 | | | | | | | |
 | | |--|------|--|------|--| | |
 | |
 | | | |
 |
 |
 | | |--|------|------|------|--|
 | I | | |--|--|--|---|--|
 | | |--|------|--|------|--| | |
 | |
 | | | | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I |
 | | |--|------|--|------|--| | |
 | |
 | | | | | |
 | | |--|------|--|------|--| | |
 | |
 | | # Berm Soil only | | | | 1 1/2" (| CRUSHED ROCK | | |-----------------------------------|-----------|----------|----------|--------------|----| | | LIVINGSTO | ON G-121 | ODOT 1½ | LIVINGSTON (| | | Analyte | RESULT | DL | RL | RESULT | DL | | Dioxins/Furans (pg/g) | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.144 | 0.111 | 1.00 | | | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.106 | 1.00 | | | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.105 | 1.00 | | | | 1,2,3,4,7,8-Hexa CDD | ND | 0.113 | 1.00 | | | | 1,2,3,4,7,8-Hexa CDF | ND | 0.0600 | 1.00 | | | | 1,2,3,6,7,8-Hexa CDD | ND | 0.118 | 1.00 | | | | 1,2,3,6,7,8-Hexa CDF | ND | 0.063 | 1.00 | | | | 1,2,3,7,8,9-Hexa CDD | ND | 0.117 | 1.00 | | | | 1,2,3,7,8,9-Hexa CDF | ND | 0.060 | 1.00 | | | | 1,2,3,7,8-Penta CDD | ND | 0.117 | 1.00 | | | | 1,2,3,7,8-Penta CDF | ND | 0.109 | 1.00 | | | | 2,3,4,6,7,8-Hexa CDF | ND | 0.057 | 1.00 | | | | 2,3,4,7,8-Penta CDF | ND | 0.106 | 1.00 | | | | 2,3,7,8-Tetra CDD | ND | 0.109 | 0.200 | | | | 2,3,7,8-Tetra CDF | ND | 0.078 | 0.200 | | | | Octa CDD | 0.746 | 0.171 | 2.00 | | | | Octa CDF | ND | 0.101 | 2.00 | | | | Total Hepta CDD | 0.291 | 0.111 | 1.00 | | | | Total Hepta CDF | 0.226 | 0.106 | 1.00 | | | | Total Hexa CDD | ND | 0.117 | 1.00 | | | | Total Hexa CDF | ND | 0.0598 | 1.00 | | | | Total Penta CDD | ND | 0.117 | 1.00 | | | | Total Penta CDF | ND | 0.107 | 1.00 | | | | Total Tetra CDD | ND | 0.109 | 0.200 | | | | Total Tetra CDF | ND | 0.0779 | 0.200 | | | | Polychlorinated Biphenyls (ug/kg) | | | | | | | Aroclor 1016 | ND | | 10.3 | | | | Aroclor 1221 | ND | | 10.3 | | | | Aroclor 1232 | ND | | 10.3 | | | | Aroclor 1242 | ND | | 10.3 | | | | Aroclor 1248 | ND | | 10.3 | | | | Aroclor 1254 | ND | | 10.3 | | | | Aroclor 1260 | ND | | 10.3 | | | | Organochlorine Pesticides (ug/kg) | | | | | | | Aldrin | ND | | 4.82 | | | | alpha-BHC | ND | | 4.82 | | | | beta-BHC | ND | | 4.82 | | | | delta-BHC | ND | | 4.82 | | | | gamma-BHC (Lindane) | ND |
4.82 |
 | |--|----|----------|------| | cis-Chlordane | ND |
4.82 |
 | | trans-Chlordane | ND |
4.82 |
 | | 4,4'-DDD | ND |
4.82 |
 | | 4,4'-DDE | ND |
4.82 |
 | | 4,4'-DDT | ND |
4.82 |
 | | Dieldrin | ND |
4.82 |
 | | Endosulfan I | ND |
4.82 |
 | | Endosulfan II | ND |
4.82 |
 | | Endosulfan sulfate | ND |
4.82 |
 | | Endrin | ND |
4.82 |
 | | Endrin Aldehyde | ND |
4.82 |
 | | Endrin ketone | ND |
4.82 |
 | | Heptachlor | ND |
4.82 |
 | | Heptachlor epoxide | ND |
4.82 |
 | | Methoxychlor | ND |
14.5 |
 | | Chlordane (Technical) | ND |
145 |
 | | Toxaphene (Total) | ND |
145 |
 | | Semivolatile Organic Compounds (ug/kg) | | | | | Acenaphthene | ND |
2.79 |
 | | Acenaphthylene | ND |
2.79 |
 | | Anthracene | ND |
2.79 |
 | | Benz(a)anthracene | ND |
2.79 |
 | | Benzo(a)pyrene | ND |
4.18 |
 | | Benzo(b)fluoranthene | ND |
4.18 |
 | | Benzo(k)fluoranthene | ND |
4.18 |
 | | Benzo(g,h,i)perylene | ND |
2.79 |
 | | Chrysene | ND |
2.79 |
 | | Dibenz(a,h)anthracene | ND |
2.79 |
 | | Fluoranthene | ND |
2.79 |
 | | Fluorene | ND |
2.79 |
 | | Indeno(1,2,3-cd)pyrene | ND |
2.79 |
 | | 1-Methylnaphthalene | ND |
5.57 |
 | | 2-Methylnaphthalene | ND |
5.57 |
 | | Naphthalene | ND |
5.57 |
 | | Phenanthrene | ND |
2.79 |
 | | Pyrene | ND |
2.79 |
 | | Carbazole | ND |
4.18 |
 | | Dibenzofuran | ND |
2.79 |
 | | 4-Chloro-3-methylphenol | ND |
27.9 |
 | | 2-Chlorophenol | ND |
13.9 |
 | | 2,4-Dichlorophenol | ND |
13.9 |
 | | 2,4-Dimethylphenol | ND |
13.9 |
 | | 2,4-Dinitrophenol | ND |
69.7 |
 | | 1 | | |
, | |------------------------------|----|----------|-------| | 4,6-Dinitro-2-methylphenol | ND |
69.7 |
 | | 2-Methylphenol | ND |
6.97 |
 | | 3+4-Methylphenol(s) | ND |
6.97 |
 | | 2-Nitrophenol | ND |
27.9 |
 | | 4-Nitrophenol | ND |
27.9 |
 | | Pentachlorophenol (PCP) | ND |
5.57 |
 | | Phenol | ND |
5.57 |
 | | 2,3,4,6-Tetrachlorophenol | ND | 13.9 | | | 2,3,5,6-Tetrachlorophenol | ND |
14.6 |
 | | 2,4,5-Trichlorophenol | ND | 13.9 | | | 2,4,6-Trichlorophenol | ND |
13.9 |
 | | Bis(2-ethylhexyl)phthalate | ND |
41.8 |
 | | Butyl benzyl phthalate | ND |
27.9 |
 | | Diethylphthalate | ND |
27.9 |
 | | Dimethylphthalate | ND |
27.9 |
 | | Di-n-butylphthalate | ND |
27.9 |
 | | Di-n-octyl phthalate | ND |
27.9 |
 | | N-Nitrosodimethylamine | ND |
6.97 |
 | | N-Nitroso-di-n-propylamine | ND |
6.97 |
 | | N-Nitrosodiphenylamine | ND |
6.97 |
 | | Bis(2-Chloroethoxy) methane | ND |
6.97 |
 | | Bis(2-Chloroethyl) ether | ND |
6.97 |
 | | Bis(2-Chloroisopropyl) ether | ND |
6.97 |
 | | Hexachlorobenzene | ND |
2.79 |
 | | Hexachlorobutadiene | ND |
6.97 |
 | | Hexachlorocyclopentadiene | ND |
13.9 |
 | | Hexachloroethane | ND |
6.97 |
 | | 2-Chloronaphthalene | ND |
2.79 |
 | | 1,2-Dichlorobenzene | ND |
6.97 |
 | | 1,3-Dichlorobenzene | ND |
6.97 |
 | | 1,4-Dichlorobenzene | ND |
6.97 |
 | | 1,2,4-Trichlorobenzene | ND |
6.97 |
 | | 4-Bromophenyl phenyl ether | ND |
6.97 |
 | | 4-Chlorophenyl phenyl ether | ND |
6.97 |
 | | Aniline | ND |
13.9 |
 | | 4-Chloroaniline | ND |
6.97 |
 | | 2-Nitroaniline | ND |
55.7 |
 | | 3-Nitroaniline | ND |
55.7 |
 | | 4-Nitroaniline | ND |
55.7 |
 | | Nitrobenzene | ND |
27.9 |
 | | 2,4-Dinitrotoluene | ND |
27.9 |
 | | 2,6-Dinitrotoluene | ND |
27.9 |
 | | Benzoic acid | ND |
348 |
 | | Benzyl alcohol | ND |
13.9 |
 | | ' | | | | | ND | | 6.97 | | | | |----------------------|--|---
--|---|--| | ND | | 6.97 | | | | | ND | | 69.7 | | | | | ND | | 27.9 | | | | | ND | | 69.7 | | | | | ND | | 69.7 | | | | | ND | | 69.7 | | | | | ND | | 13.9 | | | | | | | | | | | | 1.02 | | 1.02 | | | | | 41.8 | | 1.02 | | | | | 0.234 | | 0.203 | | | | | ND | | 4.06 | | | | | 98.2 | | 1.02 | | 100/115/90.4 | | | 2.42 | | 0.203 | | | | | 204 | | 1.02 | | | | | ND | | 0.0813 | | | | | ND | | 2.03 | | | | | ND | | 0.203 | | | | | 30.0 | | 1.60 | | | | | | | | | | | | | | | | | | | DL = detection limit | | | | | | | RL | = report | ing limit | | | | | ND | = not de | tected at o | r ak | ove the DL | | | | ND 1.02 41.8 0.234 ND 98.2 2.42 204 ND | ND ND ND ND ND ND ND ND 1.02 41.8 0.234 ND 98.2 2.42 ND | ND 6.97 ND 69.7 ND 69.7 ND 69.7 ND 69.7 ND 13.9 1.02 1.02 41.8 1.02 0.234 0.203 ND 4.06 98.2 1.02 2.42 0.203 204 1.02 ND 0.0813 ND 0.203 30.0 1.60 DL = detection limit RL = reporting limit | ND 6.97 ND 69.7 ND 69.7 ND 69.7 ND 69.7 ND 13.9 1.02 1.02 41.8 1.02 0.234 0.203 ND 4.06 98.2 1.02 2.42 0.203 204 1.02 ND 0.0813 ND 2.03 ND 0.203 30.0 1.60 | ND 6.97 ND 69.7 ND 69.7 ND 69.7 ND 69.7 ND 69.7 ND 13.9 1.02 41.8 1.02 ND 4.06 98.2 1.02 100/115/90.4 2.42 0.203 ND 0.0813 ND 0.203 ND 0.203 ND 0.203 ND 0.203 ND 1.60 DL = detection limit | | OT 1½" E | | | | | | |------------|-----------------|---|--|--|--| | | Import Criteria | | | | | | Comp
RL | import criteria | | | | | | NL NL | | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 2.5 | | | | | | | 0.5 | | | | | | | 0.5 | | | | | | | 5 | | | | | | | 5 | 10 | | | | | | | 10 | | | | | | | 10 | | | | | | | 10 | | | | | | | 10 | | | | | | | 10 | | | | | | | 10 | - | | | | | | 10 | | | | | | | 5 | | | | | | | 5 | - | | | | | | 5 | | | | | | | 5 | - | | | | | |] 5 | | | | | |
5 | | | | | | |-----------|-----|---|---|---|--| |
100 | | | | | | |
100 | | | | | | |
5
 | | | | | | |
250 | | | | | | | | | | | | | |
330 | | | | | | |
 | | | | | | |
 | | | | | | |
330 | | | | | | |
10000 | | | | | | |
 | | | | | | |
330 | | | | | | |
330 | | | | | | |
330 | | | | | | |
 | | | | | | |
330 | | | | | | |
 | | | | | | |
 | | | | | | |
 | | | | | | |
330 | | | | | | |
 | | | | | | |
• | i . | i | 1 | 1 | | | 1 | | 1 | | |----------|--|---|--| |
 | | | | |
330 | | | | |
330 | | | | |
 | | | | |
2000 | | | | |
 | | | | |
330 | | | | | | | | | |
 | | | | | | | | | |
 | | | | |
330 | | | | | | | | | |
330 | | | | |
 | | | | |
 | | | | |
330 | | | | |
 | | | | |
 | | | | |
 | | | | |
330 | | | | |
330 | | | | | | | | | |
330 | | | | |
 | | | | |
330 | | | | |

2000 | | | | | 330 | | | | |
330 | | | | | | 8.8 | | | | |------|------|--|--|--| | | | | | | | | 0.63 | | | | | | 76 | | | | | 1.02 | 34 | | | | | | 79 | | | | | | 1800 | | | | | | 0.23 | | | | | | | | | | | | | | | | | | 180 | Ī | T | | |----------|-------|------|---|---|---|
 |
 | | | | | <u> </u> |
 |
 | | | | | |
- | | | | · | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | [| | | | | | |----------|------|--|------|-----|--| | | | | | | | | <u> </u> | | | | | | | | | | | | | | [|
 | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | [| <u> </u> | | | | | | | [| <u> </u> | | | | | | | l |
 | |
 | | | | | | | | | | | | | | | | | | <u> </u> | l . | | | l . | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 |
 | | |--|------|--|------|--| | |
 | |
 | | | [| | | | | | |----------|------|--|------|-----|--| | | | | | | | | <u> </u> | | | | | | | | | | | | | | [|
 | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | [| <u> </u> | | | | | | | [| <u> </u> | | | | | | | l |
 | |
 | | | | | | | | | | | | | | | | | | <u> </u> | l . | | | l . | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - |
 | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | Ī | | Ī | T | | |---------|---|------|------|---|--|
 | <u></u> | | |
 |
 |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 |
 | | | | | |------|----------|------|------|------|
 | <u> </u> |
 |
 |
 | 1 | | | | | | | T | Т | T | | T | T | | |----------|---|---|---|---|---|---|---|--| - | | | | - | | | | | | | | | | | | | | | <u> </u> | - | | 1 | | | | 1 | 1 | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | # 1.5 in Crushed only | | | |
 | | |--|------|--|------|--| | |
 | |
 | | # 1.5 in Crushed only | <u> </u> | | | | | |----------|--|--|--|--| | |
 |
 | |----------|------|------| | |
 |
 | <u> </u> | <u> </u> |
 | | | | | | | | | | | | | | | | | 1 | |--|--|---|-----| | | l | | l | l . | | | | 1 1/2" CRUSHED ROCK | | | | | | | | | | | |-----------------------------------|-----------|---------------------|----------|--------------------------------------|----------|--|--|--|--|--|--|--| | | LIVINGSTO | DN C 424 | ODOT 41/ | LIVINGSTON G-121 OF
Comp/C Comp/W | | | | | | | | | | | LIVINGSTO | | ODO1 1½ | | | | | | | | | | | | | Grab | | | mposite | | | | | | | | | Analyte | RESULT | DL | RL | RESULT | DL | | | | | | | | | Dioxins/Furans (pg/g) | | | | | | | | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.144 | 0.111 | 1.00 | | | | | | | | | | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.106 | 1.00 | | | | | | | | | | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.105 | 1.00 | | | | | | | | | | | 1,2,3,4,7,8-Hexa CDD | ND | 0.113 | 1.00 | | | | | | | | | | | 1,2,3,4,7,8-Hexa CDF | ND | 0.0600 | 1.00 | | | | | | | | | | | 1,2,3,6,7,8-Hexa CDD | ND | 0.118 | 1.00 | | | | | | | | | | | 1,2,3,6,7,8-Hexa CDF | ND | 0.063 | 1.00 | | | |
| | | | | | | 1,2,3,7,8,9-Hexa CDD | ND | 0.117 | 1.00 | | | | | | | | | | | 1,2,3,7,8,9-Hexa CDF | ND | 0.060 | 1.00 | | | | | | | | | | | 1,2,3,7,8-Penta CDD | ND | 0.117 | 1.00 | | | | | | | | | | | 1,2,3,7,8-Penta CDF | ND | 0.109 | 1.00 | | | | | | | | | | | 2,3,4,6,7,8-Hexa CDF | ND | 0.057 | 1.00 | | | | | | | | | | | 2,3,4,7,8-Penta CDF | ND | 0.106 | 1.00 | | | | | | | | | | | 2,3,7,8-Tetra CDD | ND | 0.109 | 0.200 | | | | | | | | | | | 2,3,7,8-Tetra CDF | ND | 0.078 | 0.200 | | | | | | | | | | | Octa CDD | 0.746 | 0.171 | 2.00 | | | | | | | | | | | Octa CDF | ND | 0.101 | 2.00 | | | | | | | | | | | Total Hepta CDD | 0.291 | 0.111 | 1.00 | | | | | | | | | | | Total Hepta CDF | 0.226 | 0.106 | 1.00 | | | | | | | | | | | Total Hexa CDD | ND | 0.117 | 1.00 | | | | | | | | | | | Total Hexa CDF | ND | 0.0598 | 1.00 | | | | | | | | | | | Total Penta CDD | ND | 0.117 | 1.00 | | | | | | | | | | | Total Penta CDF | ND | 0.107 | 1.00 | | | | | | | | | | | Total Tetra CDD | ND | 0.109 | 0.200 | | | | | | | | | | | Total Tetra CDF | ND | 0.0779 | 0.200 | | | | | | | | | | | TOTAL TOXICITY EQUIVALENCY4 | | | | | | | | | | | | | | Mammalian TEF | 0.33 | | | | | | | | | | | | | Fish TEF | 0.55 | | | | | | | | | | | | | Bird TEF | | | | | | | | | | | | | | Polychlorinated Biphenyls (ug/kg) | | | | | | | | | | | | | | Aroclor 1016 | ND | | 10.3 | | | | | | | | | | | Aroclor 1221 | ND | | 10.3 | | | | | | | | | | | Aroclor 1232 | ND | | 10.3 | | | | | | | | | | | Aroclor 1242 | ND | | 10.3 | | | | | | | | | | | Aroclor 1248 | ND | | 10.3 | | | | | | | | | | | Aroclor 1254 | ND | | 10.3 | | | | | | | | | | | Aroclor 1260 | ND | | 10.3 | | | | | | | | | | | / 11 OCIOT 12 OC | ND | | 10.5 | | <u> </u> | | | | | | | | | Organochlorine Pesticides (ug/kg) | | | | |--|----|----------|------| | Aldrin | ND |
4.82 |
 | | alpha-BHC | ND |
4.82 |
 | | beta-BHC | ND |
4.82 |
 | | delta-BHC | ND |
4.82 |
 | | gamma-BHC (Lindane) | ND |
4.82 |
 | | cis-Chlordane | ND |
4.82 |
 | | trans-Chlordane | ND |
4.82 |
 | | 4,4'-DDD | ND |
4.82 |
 | | 4,4'-DDE | ND |
4.82 |
 | | 4,4'-DDT | ND |
4.82 |
 | | Dieldrin | ND |
4.82 |
 | | Endosulfan I | ND |
4.82 |
 | | Endosulfan II | ND |
4.82 |
 | | Endosulfan sulfate | ND |
4.82 |
 | | Endrin | ND |
4.82 |
 | | Endrin Aldehyde | ND |
4.82 |
 | | Endrin ketone | ND |
4.82 |
 | | Heptachlor | ND |
4.82 |
 | | Heptachlor epoxide | ND |
4.82 |
 | | Methoxychlor | ND |
14.5 |
 | | Chlordane (Technical) | ND |
145 |
 | | Toxaphene (Total) | ND |
145 |
 | | Semivolatile Organic Compounds (ug/kg) | | | | | Acenaphthene | ND |
2.79 |
 | | Acenaphthylene | ND |
2.79 |
 | | Anthracene | ND |
2.79 |
 | | Benz(a)anthracene | ND |
2.79 |
 | | Benzo(a)pyrene | ND |
4.18 |
 | | Benzo(b)fluoranthene | ND |
4.18 |
 | | Benzo(k)fluoranthene | ND |
4.18 |
 | | Benzo(g,h,i)perylene | ND |
2.79 |
 | | Chrysene | ND |
2.79 |
 | | Dibenz(a,h)anthracene | ND |
2.79 |
 | | Fluoranthene | ND |
2.79 |
 | | Fluorene | ND |
2.79 |
 | | Indeno(1,2,3-cd)pyrene | ND |
2.79 |
 | | 1-Methylnaphthalene | ND |
5.57 |
 | | 2-Methylnaphthalene | ND |
5.57 |
 | | Naphthalene | ND |
5.57 |
 | | Phenanthrene | ND |
2.79 |
 | | Pyrene | ND |
2.79 |
 | | Carbazole | ND |
4.18 |
 | | Dibenzofuran | ND |
2.79 |
 | | 4-Chloro-3-methylphenol ND 2-Chlorophenol ND | 27.9
13.9 |
ļ | |--|--------------|-------| | 12 emorophenor | | l ' | | 2,4-Dichlorophenol ND | 13.9 |
 | | 2,4-Dimethylphenol ND | 13.9 |
 | | 2,4-Dinitrophenol ND | 69.7 |
 | | 4,6-Dinitro-2-methylphenol ND | 69.7 |
 | | 2-Methylphenol ND | 6.97 |
 | | 3+4-Methylphenol(s) ND | 6.97 |
 | | 2-Nitrophenol ND | 27.9 |
 | | 4-Nitrophenol ND | 27.9 |
 | | Pentachlorophenol (PCP) ND | 5.57 |
 | | Phenol ND | 5.57 |
 | | 2,3,4,6-Tetrachlorophenol ND | 13.9 | | | 2,3,5,6-Tetrachlorophenol ND | 14.6 |
 | | 2,4,5-Trichlorophenol ND | 13.9 | | | 2,4,6-Trichlorophenol ND | 13.9 |
 | | Bis(2-ethylhexyl)phthalate ND | 41.8 |
 | | Butyl benzyl phthalate ND | 27.9 |
 | | Diethylphthalate ND | 27.9 |
 | | Dimethylphthalate ND | 27.9 |
 | | Di-n-butylphthalate ND | 27.9 |
 | | Di-n-octyl phthalate ND | 27.9 |
 | | N-Nitrosodimethylamine ND | 6.97 |
 | | N-Nitroso-di-n-propylamine ND | 6.97 |
 | | N-Nitrosodiphenylamine ND | 6.97 |
 | | Bis(2-Chloroethoxy) methane ND | 6.97 |
 | | Bis(2-Chloroethyl) ether ND | 6.97 |
 | | Bis(2-Chloroisopropyl) ether ND | 6.97 |
 | | Hexachlorobenzene ND | 2.79 |
 | | Hexachlorobutadiene ND | 6.97 |
 | | Hexachlorocyclopentadiene ND | 13.9 |
 | | Hexachloroethane ND | 6.97 |
 | | 2-Chloronaphthalene ND | 2.79 |
 | | 1,2-Dichlorobenzene ND | 6.97 |
 | | 1,3-Dichlorobenzene ND | 6.97 |
 | | 1,4-Dichlorobenzene ND | 6.97 |
 | | 1,2,4-Trichlorobenzene ND | 6.97 |
 | | 4-Bromophenyl phenyl ether ND | 6.97 |
 | | 4-Chlorophenyl phenyl ether ND | 6.97 |
 | | Aniline ND | 13.9 |
 | | 4-Chloroaniline ND | 6.97 |
 | | 2-Nitroaniline ND | 55.7 |
 | | 3-Nitroaniline ND | 55.7 |
 | | 4-Nitroaniline ND | 55.7 |
 | | Nitrobenzene | ND | | 27.9 | | | | | | |---------------------------------|----------|--|---------------|---------------------|-----------|--|--|--| | 2,4-Dinitrotoluene | ND | | 27.9 | | | | | | | , | | | | | | | | | | 2,6-Dinitrotoluene Benzoic acid | ND
ND | | 27.9
348 | | | | | | | | ND
ND | | 13.9 | | | | | | | Benzyl alcohol | | | | | | | | | | Isophorone | ND | | 6.97 | | | | | | | Azobenzene (1,2-DPH) | ND | | 6.97 | | | | | | | Bis(2-Ethylhexyl) adipate | ND | | 69.7 | | | | | | | 3,3'-Dichlorobenzidine | ND | | 27.9 | | | | | | | 1,2-Dinitrobenzene | ND | | 69.7 | | | | | | | 1,3-Dinitrobenzene | ND | | 69.7 | | | | | | | 1,4-Dinitrobenzene | ND | | 69.7 | | | | | | | Pyridine | ND | | 13.9 | | | | | | | Total Metals (mg/kg) | | | | | | | | | | Arsenic | 1.02 | | 1.02 | | | | | | | Barium | 41.8 | | 1.02 | | | | | | | Cadmium | 0.234 | | 0.203 | | | | | | | Chromium | ND | | 4.06 | | | | | | | Copper | 98.2 | | 1.02 | 100/115/90.4 | | | | | | Lead | 2.42 | | 0.203 | | | | | | | Manganese | 204 | | 1.02 | | | | | | | Mercury | ND | | 0.0813 | | | | | | | Selenium | ND | | 2.03 | | | | | | | Silver | ND | | 0.203 | | | | | | | Zinc | 30.0 | | 1.60 | | | | | | | | | | | | | | | | | Notes: | | | | | | | | | | | DL | = detect | ion limit | | | | | | | | RL | = report | ing limit | | | | | | | | ND | = not de | tected at o | r above the DL | | | | | | | * | = confiri | mation resu | ılt | | | | | | | | = excee | ds Import C | riteria | | | | | | | | oneseds impere sinceria | | | | | | | | | | = original sample result reported by laborat | | | | | | | | | ** | these additional analyses have not yet bee | | | | | | | | | | Initial source of berm material that is not in | | | | | | | | | 1 | | | | | | | | | | າ | Results from initial source of identified berr | | | | | | | | | | | | d source of identif | | | | | | | 3 | All beac | h backfill re | sults are from the | same so | | | | | | 4 | Toxicity | equivalent | calculated using D | Ls for un | | | | | | | | | · | | | | | | | |-------------------|----------------|--------|--------|-----------|-----------------------|--------------|------------------------------|--------|-------|--| | OOT 1½" E
Comp | LIVINGSTON G-1 | | I BAC¹ | (| vl Creek I
7/23/15 |) | DAYBREAK G-109
BEACH BACK | | | | | | Gra | ab | | | omposit | е | | Grab | | | | RL | RESULT | DL | RL | RESULT DL | | RL | RESULT | DL | RL | | | | | | | | | | | | | | | | 0.192 | 0.101 | 1.00 | 0.852 | 0.101 | 5.00 | 0.300 | 0.0950 | 1.00 | | | | ND | 0.104 | 1.00 | 0.445 | 0.102 | 5.00 | ND | 0.0760 | 1.00 | | | | ND | 0.103 | 1.00 | ND | 0.102 | 5.00 | ND | 0.0757 | 1.00 | | | | ND | 0.102 | 1.00 | ND | 0.107 | 5.00 | ND | 0.108 | 1.00 | | | | ND | 0.100 | 1.00 | 0.208 | 0.105 | 5.00 | ND | 0.0891 | 1.00 | | | | ND | 0.107 | 1.00 | ND | 0.112 | 5.00 | ND | 0.113 | 1.00 | | | | ND | 0.105 | 1.00 | ND | 0.109 | 5.00 | ND | 0.0929 | 1.00 | | | | ND | 0.106 | 1.00 | 0.122 | 0.109 | 5.00 | ND | 0.113 | 1.00 | | | | ND | 0.101 | 1.00 | ND | 0.104 | 5.00 | ND | 0.0898 | 1.00 | | | | ND | 0.103 | 1.00 | ND | 0.106 | 5.00 | ND | 0.0948 | 1.00 | | | | ND | 0.110 | 1.00 | ND | 0.110 | 5.00 | ND | 0.0948 | 1.00 | | | | ND | 0.0949 | 1.00 | ND | 0.0993 | 5.00 | ND | 0.0842 | 1.00 | | | | ND | 0.108 | 1.00 | ND | 0.107 | 5.00 | ND | 0.0923 | 1.00 | | | | 0.726 | 0.108 | 0.200 | ND | 0.102 | 0.999 | ND | 0.109 | 0.200 | | | | 6.81 (7.20*) | 0.100 | 0.200 | 0.128 | 0.101 | 0.999 | ND | 0.101 | 0.200 | | | | 0.783 | 0.105 | 2.00 | 5.3 | 0.101 | 9.99 | 1.45 | 0.199 | 2.00 | | | | ND | 0.107 | 2.00 | 0.495 | 0.109 | 9.99 | ND | 0.200 | 2.00 | | | | 0.327 | 0.101 | 1.00 | 1.97 | 0.100 | 5.00 | 0.564 | 0.0950 | 1.00 | | | | ND | 0.104 | 1.00 | 0.445 | 0.102 | 5.00 | 0.0901 | 0.0758 | 1.00 | | | | ND | 0.106 | 1.00 | 0.651 | 0.109 | 5.00 | 0.128 | 0.112 | 1.00 | | | | ND | 0.100 | 1.00 | 0.355 | 0.104 | 5.00 | ND | 0.0889 | 1.00 | | | | ND | 0.103 | 1.00 | ND | 0.106 | 5.00 | ND | 0.0948 | 1.00 | | | | ND | 0.109 | 1.00 | 0.145 | 0.108 | 5.00 | ND | 0.0936 | 1.00 | | | | 0.726 | 0.108 | 0.200 | ND | 0.151 | 0.999 | ND | 0.109 | 0.200 | | | | 11.7 | 0.100 | 0.200 | 0.128 | 0.101 | 0.999 | ND | 0.101 | 0.200 | | | | | | | | | | | | | | | | 0.95 | | | 0.36 | | | 0.32 | | | | | | 0.55 | | | 0.39 | | | 0.52 | | | | | | | | | 0.54 | | | | | | | | | | | | 0.54 | | | | | | | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | | ND | | 10.5 | ND | |
9.96 | ND | | 10.2 | | | | ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | | ND
ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | | ND
ND | | 10.5 | ND | | 9.96 | ND | | 10.2 | | | | ND
ND | | 10.5 | | | | ND | | 10.2 | | | | ND
ND | | 10.5 | ND
ND | | 9.96
9.96 | ND
ND | | 10.2 | | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | |--------------|----|----------|----|-----------|----|----------| | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | |
_ | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | |
7 | ND |
4.66 | ND |
0.996 | ND |
4.42 | |
7 | ND |
4.66 | ND |
0.996 | ND |
4.42 | |
\dashv | ND |
4.66 | ND |
0.996 | ND |
4.42 | |
_ | ND |
4.66 | ND |
0.996 | ND |
4.42 | |
\dashv | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
4.66 | ND |
0.996 | ND |
4.42 | | | ND |
14 | ND |
2.99 | ND |
13.3 | | | ND |
140 | ND |
29.9 | ND |
133 | | | ND |
140 | ND |
29.9 | ND |
133 | | | | | | | | | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
4.23 | ND |
249 | ND |
4.1 | | | ND |
4.23 | ND |
249 | ND |
4.1 | | | ND |
4.23 | ND |
249 | ND |
4.1 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
5.64 | ND |
249 | ND |
5.46 | | | ND |
5.64 | ND |
249 | ND |
5.46 | | | ND |
5.64 | ND |
249 | ND |
5.46 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
4.23 | ND |
249 | ND |
4.10 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
28.2 | ND |
249 | ND |
27.4 | |--|-----|----------|-----|------------|-----|----------| | | | | | _ | | | | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
70.5 | ND |
249 | ND |
68.3 | | | ND |
70.5 | ND |
598 | ND |
68.3 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
5.64 | ND |
249 | ND |
5.46 | | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
14.8 | ND |
249 | ND |
14.3 | | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
42.3 | ND |
249 | ND |
41 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
28.2 | ND |
249 | ND |
27.4 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
2.82 | ND |
249 | ND |
2.74 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
14.1 | ND |
249 | ND |
13.6 | | | ND |
7.05 | ND |
249 | ND |
6.83 | | | ND |
56.4 | ND |
249 | ND |
54.6 | | | ND |
56.4 | ND |
249 | ND |
54.6 | | | ND |
56.4 | ND |
249 | ND |
54.6 | | | 110 | 30.7 | ייי | <u>-</u> J | ייי | J 7.0 | | | | | | | | | 1 | | | | 1 | | | |-------------|-----|--------------------|-----------|------------|-----|-----------|---------|----------|-----|-----------|----------|----------|----------| | | | ND | | 28.2 | | ND | | 249 | | ND | | 27.4 | | | | | ND | | 28.2 | | ND | | 249 | | ND | | 27.4 | | | | | ND | | 28.2 | | ND | | 249 | | ND | | 27.4 | | | | | ND | | 352 | | ND | | 1250 | | ND | | 341 | | | | | ND | | 14.1 | | ND | | 249 | | ND | | 13.6 | | | | | ND | | 7.05 | | ND | | 249 | | ND | | 6.83 | | | | | ND | | 7.05 | | ND | | 249 | | ND | | 6.83 | | | | | ND | | 70.5 | | ND | | 249 | | ND | | 68.3 | | | | | ND | | 28.2 | | ND | | 249 | | ND | | 27.4 | | | | | ND | | 70.5 | | ND | | 249 | | ND | | 68.3 | | | | | ND | | 70.5 | | ND | | 249 | | ND | | 68.3 | | | | | ND | | 70.5 | | ND | | 249 | | ND | | 68.3 | | | | | ND | | 14.1 | | ND | | 498 | | ND | | 13.6 | 1.65 | | 1.10 | | ND | | 1.03 | | 59.0** | | 1.02 | | | | | 59.4 | | 1.10 | | | | | | 74.4 | | 1.02 | | | | | ND | | 0.221 | | ND | | 0.206 | | ND | | 0.205 | | | | | ND | | 4.42 | | 3.88 | | 1.03 | | 9.69 | | 4.09 | | | 1.02 | | 24.5 | | 1.10 | | 11.7 | | 1.03 | | | | | | | | | 2.5 | | 0.221 | | ND | | 1.03 | | 3.47 | | 0.205 | | | | | 210 | | 1.10 | | 145 | | 1.03 | | | | | | | | | ND | | 0.0884 | | ND | | 0.165 | | ND | | 0.0818 | | | | | ND | | 2.21 | | | | | | ND | | 2.05 | | | | | ND | | 0.221 | | | | | | ND | | 0.205 | | | | | 33.3 | | 4.42 | | 17.1 | | 4.11 | _ | <u> </u> | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | g/k | g. The result from | reanalysi | s of a sec | one | d aliquot | from th | e same s | amp | ole was 4 | 1.45 mg/ | kg. Thre | e 5 | | ceived. | | | | | | | | | | | | | | | ided for im | po | rt | | | | | | | | | | | | | naterial | | | | | | | | | | | | | | | material | ırce. | | | | | | | | | | | | | | | detected co | ong | geners. | | | | | | | | | | | l | | | | | - | | | BFAC | H B | ACKFILL | 3 | | | | | | | |--------|---------------------------------|------------|---|--------|---------|------|-----|---------|---------|-----|---|--------|---------|-----|--| | BEA | REAK (ACH BA
eanalys
Grab | NCK | | | 3-S Con | np | | BE | B-C Con | _ | | | B-N Cor | | | | RESULT | DL | RL | | | KLJULI | DL | IVE | | KLJULI | DL | IXL | | KLSOLI | DL | IVL | | KLJULI | DL | IVE | _ | _ |
 | |
 | | | |
 | | |----|----------|--|------|--|---|--|------|--| | |
 | |
 | | | |
 |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | | |
 | | | |
 | |
 | | - | |
 | | | | | | | | | | | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
4.18 | |
 | | | |
 | | | ND |
4.18 | |
 | | | |
 | | | ND |

4.18 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
5.57 | |
 | | | |
 | | | ND |
5.57 | |
 | | | |
 | | | ND |
5.57 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
2.79 | |
 | | | |
 | | | ND |
4.18 | |
 | | | |
 | | | ND |
2.79 | | | | | | | | | עא |
2.79 | |
 | | | |
 | | | ND |
27.9 |
 | |
 | |
 | | |----|----------|------|--|------|--|------|--------------| | ND |
13.9 |
 | |
 | |
 | | | ND |
13.9 |
 | |
 | |
 | | | ND |
13.9 |
 | |
 | |
 | | | ND |
69.7 |
 | |
 | |
 | | | ND |
69.7 |
 | |
 | |
 | | | ND |
69.7 |
 | |
 | |
 | | | ND |
69.7 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
5.57 |
 | |
 | |
 | | | ND |
13.9 |
 | |
 | |
 | | | ND |
14.6 |
 | |
 | |
 |
\vdash | | ND |
13.6 |
 | |
 | |
 |
\vdash | | ND |
13.6 |
 | |
 | |
 |
\vdash | | ND |
41.8 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
27.9 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
2.79 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
13.9 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
2.79 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
13.9 |
 | |
 | |
 | | | ND |
6.97 |
 | |
 | |
 | | | ND |
54.6 |
 | |
 | |
 | | | ND |
55.7 |
 | |
 | |
 | | | ND |
55.7 |
 | |
 | |
 | | | | | | | | | | | | | | | | | _ | | |----------|--------|----------|-----|----------|--------|----------|-----|-----------|-----------|----------|------|---------|--------|----------|-----| | ND | | 27.9 | | | | | | | | | | | | | | | ND | | 27.9 | | | | | | | | | | | | | | | ND | - | 27.9 | | | | | | | | | | | | | | | ND | - | 348 | | | | | | | - | | | | | | | | ND | | 13.9 | | | | | | | | | | | | | | | ND | | 6.97 | | | | | | | | | | | | | | | ND | | 6.97 | | | | | | | | | | | | | | | ND | | 6.97 | | | | | | | | | | | | | | | ND | | 27.9 | | | | | | | | | | | | | | | ND | | 69.7 | | | | | | | | | | | | | | | ND | | 69.7 | | | | | | | | | | | | | | | ND | | 69.7 | | | | | | | | | | | | | | | ND | | 13.9 | 4.45** | | 1.02 | | 4.29 | | 1.02 | | 4.43 | | 1.04 | | 4.46 | | 1.10 | | | 38.2 | | 1.02 | | | | | | | | | | | | | | | ND | | 0.205 | | | | | | | | | | | | | | | 9.51 | | 4.09 | 3.28 | | 0.205 | ND | | 0.0818 | | | | | | | | | | | | | | | ND | | 2.05 | | | | | | | | | | | | | | | ND | | 0.205 | · | | | | | | · | | | point co | mposit | e sample | s w | ere ther | collec | ted from | the | e materia | ıl, and t | he resul | ting | arsenic | concen | trations | wei | D Tatal Ca | | Import Critoria | |--------|---------------------|-------|-----------------| | | B-Total Co Composit | _ | Import Criteria | | RESULT | DL | RL | | | RESULT | DL | NL | | | 0.299 | 0.108 | 4.96 | 2.5 | | | 0.108 | | 2.5 | | 0.11 | | 4.96 | | | ND | 0.0968 | 4.96 | 2.5 | | ND | 0.102 | 4.96 | 2.5 | | ND | 0.0999 | 4.96 | 2.5 | | ND | 0.107 | 4.96 | 2.5 | | ND | 0.103 | 4.96 | 2.5 | | ND | 0.104 | 4.96 | 2.5 | | ND | 0.0993 | 4.96 | 2.5 | | ND | 0.101 | 4.96 | 2.5 | | ND | 0.105 | 4.96 | 2.5 | | ND | 0.0945 | 4.96 | 2.5 | | ND | 0.103 | 4.96 | 2.5 | | ND | 0.103 | 0.993 | 0.5 | | ND | 0.107 | 0.993 | 0.5 | | 1.81 | 0.107 | 9.93 | 5 | | 0.166 | 0.108 | 9.93 | 5 | | 0.523 | 0.108 | 4.96 | | | 0.11 | 0.0965 | 4.96 | | | ND | 0.162 | 4.96 | | | ND | 0.102 | 4.96 | | | | | | | | ND | 0.101 | 4.96 | | | ND | 0.104 | 4.96 | | | ND | 0.144 | 0.993 | | | ND | 0.107 | 0.993 | | | | | | | | 0.33 | ND | | 9.19 | 10 | | | | | | | ND | | 9.19 | 10 | | ND | | 9.19 | 10 | | ND | | 9.19 | 10 | | ND |
1.8 | 5 | | | | |----|----------|----------|--|--|--| | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 100 | | | | | ND |
1.8 | 100 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | _ | 1.8 | 5 | | | | | ND | | | | | | | ND |
1.8 | <u> </u> | | | | | ND |
1.8 | | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
1.8 | 5 | | | | | ND |
5.41 | 5 | | | | | ND |
54.1 | | | | | | ND |
54.1 | 250 | | | | | | | | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
3.97 | 330 | | | | | ND |
3.97 | | | | | | ND |
3.97 | | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
5.29 | 10000 | | | | | ND |
5.29 | | | | | | ND |
5.29 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
2.65 | 330 | | | | | ND |
3.97 | | | | | | ND |
2.65 | 330 | | | | | ND |
26.5 | | | | | |---------|----------|-------------|--|--|--| | | | | | | | | ND |
13.2 | | | | | | ND |
13.2 | | | | | | ND |
13.2 | 330 | | | | | ND |
66.2 | | | | | | ND |
66.2 | | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
26.5 | | | | | | ND |
26.5 | 2000 | | | | | ND |
26.5 | | | | | | ND |
5.29 | 330 | | | | | ND |
13.2 | | | | | | ND |
13.2 | | | | | | ND |
13.2 | | | | | | ND |
13.2 | | | | | | ND |
39.7 | 330 | | | | | ND |
26.5 | 330 | | | | | ND |
26.5 | 330 | | | | | ND |
26.5 | 330 | | | | | ND |
26.5 | 330 | | | | | ND |
26.5 | 330 | | | | | ND |
6.62 | | | | | | ND |
6.62 | | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | | | | | | ND |
6.62 | | | | | | ND |
6.62 | | | | | | ND |
2.65 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
13.2 | | | | | | ND |
6.62 | 330 | | | | | ND |
2.65 | | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | 330 | | | | | ND |
6.62 | | | | | | ND |
6.62 | | | | | | ND |
13.2 | | | | | | ND |
6.62 | | | | | | ND |
52.9 | | | | | | ND |
52.9 | | | | | | ND |
52.9 | | | | | | שויו |
32.3 | - - | | | | | | | Т | | 1 | ı | T | | |-----------|-------------|------------|---------------------------|---|---|---|--| | ND | | 26.5 | | | | | | | ND | | 26.5 | | | | | | | ND | | 26.5 | | | | | | | ND | | 330 | 2000 | | | | | | ND | | 13.2 | 330 | | | | | | ND | | 6.62 | | | | | | | ND | | 6.62 | | | | | | | ND | | 66.2 | | | | | | | ND | | 26.5 | | | | | | | ND | | 66.2 | | | | | | | ND | | 66.2 | | | | | | | ND | | 66.2 | | | | | | | ND | | 13.2 | | | | | | | | | | | | | | | | 3.91 | | 1.10 | 8.8 | | | | | | | | | | | | | | | ND | | 0.22 | 0.63 | | | | | | 8.59 | | 1.1 | 76 | | | | | | 25.2 | | 2.20 | 34 | | | | | | 3.36 | | 0.22 | 79 | | | | | | 323 | | 1.10 | 1800 | | | | | | ND | | 0.0881 | 0.23 | 28.9 | | 4.40 | 180 | 4 30 4 | . احت ۱۸۵ | 1 10 11 . | | | | | | | e 4.29, 4 | 1.43, and 4 | +.46 mg/Kg | . Laboratory reports from | | | | | | - | | | | | | | | | - |
 | | |--|--|--|------|--| • | | | • | | |----------
---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I |
 | | | | | | | | |------|---|---|---|---|---|---|--|
 | _ | _ | _ | _ | _ | _ | | | | • | | • | | |--|---|--|---|--| _ | | |
 | |--|---|--|--|------| • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | • | | • | | |--|---|--|---|--| _ | | |
 | |--|---|--|--|------| • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I | • | | • | | |--|---|--|---|--|
 | | |--|--|--|------|--| • | | | • | | |----------|---|------|------|---|------|
 |
 | |
 | <u> </u> | 1 | | | | | | | | | | | | |
 |
 | |
 | <u> </u> | | | | | | | | | | | | | | I |
 | | | | | | | | |------|---|---|---|---|---|---|--| | | | | | | | |
|
 | _ | _ | _ | _ | _ | _ | | | | • | | • | | |--|---|--|---|--|
 | | |--|--|--|------|--|
 | • | | • | | |---|------|---|----------|---|------|
 | | | |
 | <u> </u> | 1 | | | | | | | | | • | | • | | |---|------|---|----------|---|------|
 | | | |
 | | |
 | <u> </u> | 1 | | | | | | | <u> </u> | | <u> </u> | | | |----------|--|----------|--|--|
 | | |--|--|--|------|--| • | | • | | |---|------|---|----------|---|------|
 | |
 | |
 | <u> </u> | 1 | | | | | | | | | • | | • | | |---|------|---|----------|---|------|
 | | | |
 | <u> </u> | 1 | | | | | |